MEOS™ Capture HRTG v4
High Rate Test Generator

The MEOS™ Capture HRTG is a high performance test generator for the most demanding professional users. The MEOS™ Capture HRTG implements the same key properties as all MEOS™ Capture products: Performance, Reliability and Flexibility.

MEOS™ Capture HRTG outputs PN sequences, simulated data and real satellite data as ECL synchronous clock and data, and a 720 MHz modulated IF signal.

Performance
Outputs
- Serial ECL clock/data
- (x)PSK modulated signal on 720 MHz carrier

High data rates
- Supporting data rates from 500 kbps to 1 Gbps (ref. Table 1 on page 3 for performance figures)

Coding of data
- Reed-Solomon, differential and convolutional

Multiple data formats
- Frame formats
- PN sequences
- Data bit stream (files)

Reliability
Reduce your operations cost by automated “lights-out” operations
- Fully automated operations, allowing schedules to be preloaded in advance. Once a schedule has been received, the MEOS™ Capture HRTG will work autonomously according to the schedule.
- Very stable Linux system, supporting 24/7 operations without operator intervention

Key features & benefits
- Encoding of output data
- Output of files, frames or PRN patterns
- PSK modulator
- Two output types; serial clock/data and modulated IF signal
- Programmable IF carrier sweep, signal level and noise generator
- State of the art FPGA based hardware
- Extensive monitoring and control capabilities, locally and remotely.
- Instant status information on ongoing testing
- Java based Graphical User Interface
- Manual or automated operations

Flexibility & modularity
Keep your original system, just add functionality if needed
- One extra set of output channels (digital and analog) may be added
- Data storage on removable media may be added

MEOS™ Capture HRTG
MEOS™ Capture HRTG
Block Diagram

Data type options
- PN sequences for BER performance test
- Real data files stored locally, all formats
- Pre-generated data files stored locally
- Realtime generated frame formats – standard CCSDS frames or other (specify on order)
- Coding (ref. page 3 for coding options)

Graphical User Interface
- Programmable (XML definition), Java based GUI. Stand alone or through a web browser.

External Interface
- TCP socket and XML based external interface
- Access authentication
- MEOS™ Connect ready
- Designed for seamless integration in Ground Station networks, with GUI and API providing detailed system visibility and control from any location in the network, with minimal bandwidth requirements.

Options
- Archival & Retrieval: Archival and retrieval of data to/from removable media (requires additional HW).
- Additional channel: Increase system flexibility by adding one additional set of analog and digital channels
- Data Generation: Generate more types of data using software tools
- BERT (Bit Error Rate Tester): Test bit error rate
- Coding: see page 3

Graphical User Interface

MEOS™ Capture HRTG user interface
MEOS™ Capture HRTG Technical Specifications

Outputs
- PSK modulated data channel
 - 720 MHz carrier frequency (+/- 200 MHz tunable range, 1 kHz steps)
 - Signal level: -10 dBm to -50 dBm
 - Output signal:
 - 50 ohm
 - <1.5 VSWR
 - Data Rate: see table below
- Dual serial clock/data outputs – separate or merged data
 - Data polarity:
 - Normal/Inverted
 - External clock input
 - Electrical standard: Differential ECL (standard), RS-422, LVDS
 - Selectable clock inversion (0° or 180°)
- All female SMA connectors

Modulator
- Modulation:
 - CBPSK, AQPSK, BPSK, QPSK, OQPSK, UQPSK (I/Q unbalance 3dB, 6dB, 9dB), 8PSK, 16QAM
- Matched filters:
 - Raised Cosine
 - Square Root Raised Cosine
- AWGN Noise Generator:
 - Eb/No: -10 dB to 30 dB, programmable
- Doppler emulation:
 - Rate range (frequency sweep): 1 kHz/s to 100 kHz/s
 - Max +/- 1.5 MHz from centre frequency
- PN data sequences of length:
 - 2³, 2¹⁰, 2¹¹, 2¹⁵, 2²³, 2²⁷

Coding
- Modulo 4 Differential Coding (option)
- Modulo 2 Differential Coding (PCM):
 - NRZ-M, NRZ-S, NRZ-L, BP-L
- Trellis Encoding 4D-TCM:
 - Rate: 8/12, 5/6 (10/12)
- Convolutional encoding:
 - Compliant with CCSDS 131.0-B-1
 - Rate 1/2, 2/3, 3/4, 5/6, 7/8
 - 7 bits constraint length
- Reed-Solomon:
 - (255, 223)
 - Optional: (10, 6), (255, 239)

Physical
- Rack mountable chassis
- Height x Width x Depth: 21,8 CM X 48,26 CM X 73,22 CM
- Weight: appr. 40 kg
- Power:
 - 100-240 volts, 50-60 Hz
 - Dual power supplies
 - Consumption: 500 W
- Temperature:
 - Operating: 10°C to 35°C
 - (non-operating: -30°C to 60°C)
- Relative humidity (non condensing):
 - Operating: 10% to 90%
 - (non-operating: 5% to 95%)
- Separate keyboard and monitor unit (optional)

Optional items can be made available upon request.

<table>
<thead>
<tr>
<th>Data type</th>
<th>Modulated data</th>
<th>Data/Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BPSK</td>
<td>xQPSK</td>
</tr>
<tr>
<td>PN sequences</td>
<td>250 Mbps</td>
<td>500 Mbps</td>
</tr>
<tr>
<td>Frame formats</td>
<td>250 Mbps</td>
<td>500 Mbps</td>
</tr>
<tr>
<td>Files on disk</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Ext clock/data input</td>
<td>250 Mbps</td>
<td>500 Mbps</td>
</tr>
</tbody>
</table>

Supported data rates (TBC)
Integrating your ground station network

The challenge
A network of satellite ground stations typically consists of many sites. Each site may have one or more antennas and associated switching matrices and receivers. The stations may have individual technical solutions that may also undergo evolution during the operational life. Operations are typically under a combination of local and centralized control. Equipment diagnostic tools are available primarily at the station level. Generating and distributing status reports and statistics to support operational decisions, is typically a manual process.

Operational schedules are distributed from the central site to the stations. In some cases manual work is required to run the stations according to these schedules. Manual work is also required at the central site to assemble reports, make statistics available and present this during operations briefings.

The solution
The MEOS™ Capture HRTG is designed for seamless integration in ground station networks. Its GUIs and remote monitoring and control capability provides detailed system visibility and control from any location in the network, with minimal bandwidth requirements. Network capacity utilization is optimized by automatic and adaptive bandwidth allocation and retransmission.

System status and data quality statistics are automatically generated and disseminated for central archiving and report compilation. The MEOS™ Capture HRTG and the MEOS™ Connect are the ideal elements for building your ground station network.

Benefits
The MEOS™ Capture HRTG, MEOS™ Control and MEOS™ Connect can be combined into a ground station network requiring an absolute minimum of manual operations. This reduces operational cost and delays.

The MEOS™ Capture HRTG uses FPGA-based hardware, meeting your future needs for upgrades. This contributes to the reduced lifetime cost of your ground station network.

Related Products

- MEOS™ Capture HRFEP - High Rate Front End Processor
- MEOS™ Capture HRDFEP - High Rate Demodulator and Front End Processor
- MEOS™ Capture HRTG - High Rate Test Generator
- MEOS™ Capture HRR - High Rate Recorder
- MEOS™ Connect - Ground Station Networking / Systems-of-systems
- MEOS™ Control - Controlling external equipment from one system

MEOS™ Capture HRTG is delivered with SuSe Linux, and normally configured, tested and pre-qualified at Kongsberg Spacetec AS premises.

Alternative configurations may be available upon request.